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ABSTRACT

Van Genuchten, M.Th., 1981. Analytical solutions for chemical transport with simul-
taneous adsorption, zero-order production and first-order decay. J. Hydrol., 49:
213—233.

Analytical solutions are presented for the movement of a chemical in a porous medium
as influenced by linear equilibrium adsorption, zero-order production, and first-order
decay. Solutions, obtained by means of Laplace transforms, are given for different initial
and boundary conditiong. Some typical examples, furthermore, demonstrate the effects of
the two rate terms on resulting chemical concentration distributions.

INTRODUCTION

A look at recent literature shows that much has been learned about the
effects of dispersion, adsorption, and decay on chemical transport in soils.
Numerous analytical solutions have been developed to quantitatively describe
one-dimensional convective—dispersive solute transport (Lapidus and
Amundson, 1952; Ogata and Banks, 1961; Brenner, 1962; Ogata, 1964;
Lindstrom et al., 1967; Gershon and Nir, 1969; Cleary and Adrian, 1973;
Lindstrom and Stone, 1974a, b; Marino, 1974a, b; Selim and Mansell, 1976).
Many other solutions, undoubtedly, will follow. Such solutions are needed,
not only by those of us interested in actually predicting the movement of
such chemicals as pesticides, fertilizers, heavy metals, or radioactive waste
materials in field soils, but also by those more interested in an analysis of
the different mechanisms affecting chemical transport (for example, in con-
junction with column displacement studies).

*1 Contribution from the U.S. Salinity Laboratory, USDA—SEA—AR, 4500 Glenwood
Drive, Riverside, CA 92501, U.S.A. )

*2 The author is located at the U.S. Salinity Laboratory, 4500 Glenwood Drive, River-
side, CA 92501, U.S.A.
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Generally, several processes will act simultaneously on a chemical con-
stituent while being transported through the soil. This necessitates that quan-
titative descriptions of chemical transport include as many processes as
realistically feasible. This paper presents several analytical solutions of the
one-dimensional, single-ion convective—dispersive transport equation; which
includes terms accounting for linear equilibrium adsorption, zero-order pro-
duction and first-order decay. Solutions are derived for a semi-infinite medium
and several sets of initial and soil surface boundary conditions. Some examples
are given to show the effects of various terms in the transport equation on
computed chemical concentration distributions.

THE GOVERNING TRANSPORT EQUATION

The partial differential equation describing one-dimensional chemical trans-
port during transient fluid flow is taken as (see also the Notation for symbols
used in this paper):

c
% (GD% — c) — E% (0c + pS) = abc + PfpS—0 (1)
where c is the solution concentration (M L™3); S is the adsorbed concentra-
tion (M°); 6 is the volumetric moisture content (L°); D is the dispersion
coefficient (L2 T7!); q is the fluid flux density (L T™'); and p is the porous
medium bulk density (M L™3). The coefficients « and (8 are first-order rate
constants for decay, and are associated with the liquid and solid phases of
the soil, respectively (T™!). The coefficient y represents a zero-order liquid-
phase source term (ML™3 T7!).

NOTATION

List of symbols used

term defined by eq. 11
term defined by eq. 12
solution concentration
Laplace transform of ¢
ci(x) general initial concentration

oo

C; constant initial concentration

co(?) general surface boundary concentration
Co constant surface boundary concentration
Cyp background concentration

D dispersion coefficient

E term defined by eq. 17

F term defined by eq. 21

G term defined by eq. 23

H term defined by eq. 27

I; terms defined in Appendix A (i =1,5)
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NOTATION (continued)

terms defined in Appendix B (i = 1,3)
distribution coefficient defined in eq. 2
term defined by eq. 28

term defined by eq. 30

term defined by eq. 34

fluid flux density

term defined by eq. 38

retardation factor defined by eq. 4
Laplace transform variable

adsorbed concentration

time

= o[1+ 4uD/o? 11

term defined by eq. C-4

pore water velocity

term defined by eq. C-5

= »[1+ 4(u — AR)D/v? ] V?

term defined by eq.C-10

distance

term defined by eq. C-14

term defined by eq. C-15

term defined by eq. C-20

first-order liquid phase decay constant
first-order solid phase decay constant
zero-order liquid phase source term
volumetric moisture content

decay constant for surface boundary condition
general first-order decay constant (eq. 5)
= o[1 — 4\DR/v* ]2

porous medium bulk density

DR XOIRDRINKXE SE Qe QF T 3 OoR v ZE TN

The solution of eq. 1 requires an expression relating the adsorbed con-
centration (S) with the solution concentration (c). Several types of models
for adsorption or ion exchange can be used, such as equilibrium and non-
equilibrium models. In this study, only single-ion equilibrium transport is
considered and the general adsorption isotherm is described by a linear (or
linearized) isotherm of the form:

S = ke (2)

where k is an empirical constant (M™! L3). Substitution of eq. 2 into eq. 1
gives:

9 [ppdc _ | 09(0Rc) _ _
% (ODax qc) or Ouc — 0 (3)
where the retardation factor R is defined by:

R = 1+ pk/0 (4)
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and where the general decay constant u is given by
u = o+ Bpk/0 (5)

Note that u reduces to «R when o equals f3.

When the volumetric moisture content and the volumetric fluid velocity
remain constant in time and space (steady-state flow), the transport equa-
tion reduces to:

D——v——R_—- = uc—vy (6)
X

where v (= q/0) is the interstitial or pore-water velocity. Eq. 6, or appropriate
simplifications thereof, has been used widely in soil science, chemical and
environmental engineering, and water resources. Some of the known appli-
cations are the movement of ammonium or nitrate in soils (Gardner, 1965;
Reddy et al., 1976; Misra and Mishra, 1977), pesticide movement (Kay and
Elrick, 1967; Van Genuchten and Wierenga, 1974), transport of radioactive
waste materials (Arnett et al., 1976; Duguid and Reeves, 1977), fixation of
certain iron and zinc chelates (Lahav and Hochberg, 1975), and precipitation
and dissolution of gypsum (Kemper et al., 1975; Keisling et al., 1978; Glas
et al., 1979) or other salts (Melamed et al., 1977). Transport equations similar
to -eq. 6 have also been applied to salt-water intrusion problems in coastal
-aquifers (Shamir and Harleman, 1966), to thermal and contaminant pol-
lution in rivers and lakes (Cleary, 1971; Thomann, 1973; DiToro, 1974;
Baron and Wajc, 1976), and to convective heat transfer problems in general
(Carslaw and Jaeger, 1959; Lykov and Mikhailov, 1961).

Eq. 6 will be solved for a semi-infinite porous medium and for different
initial and surface boundary conditions. In its most general form the initial
condition is given by:

c(x,0) = ci(x) (7

Two different sets of boundary conditions associated with the surface
(x = 0) are considered: a general third-type (or flux-type) boundary:

oc
—D—+
( D % vc)

and a general first-type (or concentration-type) boundary condition of the
form:

c(0,t) = co(t) (8b)

= vco (1) (8a)

x=0

Several analytical solutions of eq. 6, subject to some specific initial (eq. 7)
and soil surface boundary conditions (eq. 8a or eq. 8b), will now be derived.
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THEORETICAL
Solutions for a third-type boundary condition

Case Al. Eq. 6 is solved subject to the following initial and boundary con-
ditions:

e(x,0) = C; (9a)
vC 0<t<t
(—DEMC) = { ° ° (9b)
ox veo 0 t>t,
ac -

where C; and C, are constants. Appendix A gives a complete derivation of
the solution, using Laplace transforms. The solution is:

{ (Co — /1) A(x,t) + B(x,t) 0<t<tp
c(x,t) =
(Co —Y/W)A(x,t) + B(x,t) — CoA(x, t —to) t>¢ (10)
where

v (v —u)x Rx —ut v (v + u)x
AlxD) = (v+u)eXp[ 2D ]erfc[Z(DRt)1/2]+ (v——u)eXp[ 2D ]

\ orfo| Bxtut | 2 o _pt) Rx + ot

2R | " 2up TP\ D T R )¢ |2(DRD) (11)

’ 1/2
¥ ut\f1 Rx — ot vzt)
B(x,t) = —-—C; —= =
(1) (u C)eXp( R){z erfc[Z(DRt)1/2]+(wRD

(Rx —ot)*| 1 vx | vt VX Rx + vt
x exp| == pp | "o Lt ot or )P D || 2 DRe)

+ %+ (Ci —%)exp(—%t) (12)
and
u = v(1 + 4uD/v?)V? (13)

Case A2. The steady-state solution of the same problem (case A1) follows
immediately from eq. 10 by letting ¢ and t, go to infinity:

- AV w—ugx
c(x) = u + (CO u)(v+u)eXp[ oD ] (14)
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Eq. 14 is hence the solution of:

d%c de
— — — | — + —
D B2 Vax Mt 0 (15)
subject to:
(_ pde 4 v'c) = oC, (16a)
dx x20
dc
- — O
I (*) (16b)

Note that the retardation factor R does not appear in eq. 14. This shows that
the steady-state solution is not affected by adsorption.

Case A3. Eq. 10 gives the solution of eq. 6 subject to a constant initial con-
centration C;. Such a constant initial concentration may not be realistic in
all situations. Suppose, for example, that the porous medium was leached
earlier with a feed solution having a concentration equal to some character-
istic “background” value, C, (not necessarily zero). It seems more realistic
to replace the constant initial concentration in this situation with the steady-
state solution, i.e. by eq. 14 with C, replaced by C,,. The problem now is to
solve eq. 6 subject to the initial condition:

o(x,0) = E(x) = 1#+(Cb —%) (v_iv_u)exp{(z_—z_;l&] (17)

and boundary conditions (9b) and (9c). Using Laplace transform techniques
similar to those for case A1 in Appendix A, the following solution is obtained:

(Co — Cp)A(x,t) + E(x) 0<t<t,

(18)
(Co — Cy)A(x,t) + E(x) — CoA(x,t —to) t>t,

c(x,t) = {

where A(x,t) is given by eq. 11 and E(x) exactly by the initial condition
(17).

Case A4. Eq. 6 is solved for the following initial and boundary conditions:
c(x,0) = C; (19a)
—Dg(i+vc = vCyexp(— At) and a—c(oo t) = 0 (19b,c)

o 0 ®xP ax ’
These conditions are the same as for case A1, except that the pulse-type sur-
face boundary condition (eq. 9b) is replaced by an exponentially decaying

x=0
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one (eq. 19b). The parameter A in eq. 19b represents a first-order rate con-
stant for decay (T™!). The derivation for this case again follows closely the
derivation given in Appendix A for case A1. The solution is:

CoF (x,t) +B(x,t)—%A(x,t) (L #\R)
c(x,t) = (20)
CoG(x,t) + B(x,t) —%A(x,t) (k= \R)

where A(x,t) and B(x,t) are given by eqgs. 11 and 12, respectively, and:
(v —w)x Rx —wt
f +
0+ w) =P [ oap |T¢|2(DR1)?

+
[ w)x} [Rx + wt] n
v — w)x 2(DRt)"?

F(x,t) = exp(— )\t){

s o~ o] g @
w = v[1+4D(u—\R)/v? | 2 (22)
G(x,t) = exp(— ut/R){%erfc[%ﬁ] + (:;;)sz

exp[—@fD;R:'t—)j} - %(1 = +D—R )exp(vx/D) X

erfc[f(%gf—ﬂ] } (23)

Case A5. This case is the same as the previous one, except that the constant
initial concentration (eq. 19a) is replaced by the steady-state solution as used
in case A3. The problem, hence, is to solve eq. 6, subject to the initial con-
dition (17) and boundary conditions (19b) and (19c). The solution is:

Co F(x,t) — CoA(x,t) + E(x) (N #uR)

c(x,t) = { (24)
CoG(x,t) —CpA(x,t) + E(x) (A = uR)

where F(x,t) and G(x,t) are defined by egs. 21 and 23, respectively, A(x,t)
by eq. 11 and E(x) by the initial condition (17).
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Solutions for a first-type boundary condition

Case B1. Eq. 6 is solved subject to the following initial and boundary con-
ditions:

c(x,0) = C; (25a)
Co 0<t<t,

c(0,t) = (25b)
0 t>t,

e t)y =0 25

ax( 1) = (25c¢)

Appendix B gives a complete derivation of the analytical solution for this
case, again using Laplace transforms. The solution is as follows:

e { (Co —v/W)H(x,t) + M(x,t) 0<t< ¢,
D =1 (Co = yHE ) + M) — CoHx, t—ty) > 1,
(26)
where
H(x,t) = % exp [__(v ;g)x } erfc [—————21:;1;;52] + %—exp [____(v -;lu))x} X
Rx + ut
erfc [W] (27)

1 Rx —
M(x,t) = (%—Ci)exp(—%){gerfc [2(27552} +

1 VX Rx + vt Yy .| v o ut
= e k7 +4L 4 e — 28
exp(D )erfc [2(DRt)l/2” u (C, #)exp( R ) (28)

and where u is the same as before (eq. 13).

Case B2. The steady-state solution of case B1 follows from eq. 26 by letting
t and t, go to infinity:

c(x) = % + (CO —%)exp [(”2;0”)—’9] (29)

Eq. 29 is hence the solution of eq. 15 subject to condition (16b) and the sur-
face boundary condition ¢(0) = C,.
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Case B3. Similar to case A3, eq. 6 is again solved with the initial constant
concentration replaced by the steady-state solution:

¢(x,0) = N(x) = '—ZL-+ (cb ——%)exp [(—%w—] (30)

where C,, as before, represents the background concentration of the applied
water before the pulse of concentration C, was added to the profile. The
analytical solution for this case [i.e. of eq. 6 subject to conditions (30),
(25b) and (25c¢)] is given by:

(31)
(Co — Cyp)H(x,t) + N(x) — CoH(x,t —tg)  t>to

where H(x,t) is given by eq. 27 and N(x) by eq. 30.

Case B4. This case is the same as case A4, except that the exponentially de-
caying boundary condition at the surface is now given by:

c(0,t) = Cpexp(— \t) (32)

The derivation of the analytical solution of eq. 6, subject to conditions
(25a), (25c) and (32) is nearly identical to the derivation of the analytical
solution of case B given in Appendix B. The solution is:

c(x,t) = COP(x,t)+M(x,t)—-%H(x,t) (33)

where H(x,t) and M(x,t) are given by egs. 27 and 28, respectively, and
where:

P(x,t) = exp(— kt){%exp [(_v;D_w)x] erfc[%}{ltf%] +

1 (v +tw)x Rx + wt

— b R A f —

2 exp[ oD ] erfc [2( t)l/z}} (34)
with w given by eq. 22.

Case B5. The last problem considered is again analogous to case A5. Eq. 6
is solved, subject to the steady-state-type initial concentration of case B3
(eq. 30), an exponentially decaying surface boundary condition (eq. 32),
and for a semi-infinite medium (eq. 25¢). The analytical solution for this
case is:

c(x,t) = CoP(x,t) — C,H(x,t) + N(x) (35)
where P(x,t), H(x,t) and N(x) are given by eqs. 34, 27 and 30, respectively.
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Limiting cases and some results

The analytical solutions given thus far were derived for non-zero values of
the parameters v and u. In many situations, one or both of these parameters
will be zero. Mathematically, the simplest case arises when the zero-order
source term (vy) vanishes. The transport equation reduces then to:

d%c ac ac

W_v-a—;_RE = uc (36)
All previous solutions of eq. 6 now reduce to solutions of eq. 36 by simply
setting the parameter y equal to zero in the different expressions. For
example, the solution of eq. 36 subject to initial condition (9a) and bound-
ary conditions (9b) and (9c) follows immediately from case AI by setting
v = 0in egs. 10 and 12. Hence the solution is:

CoA(x,t) + C;Q(t) — C,G(x,1) 0<t<t,

CoA(,t) + CQ(E) — CiG(x,t) — CoA(x,t —to) t >t
(37)

where A(x,t) and G(x,t) are given by egs. 11 and 23, respectively, and
where:

Q(t) = exp(— ut/R) (38)

The analytical solution (37) was given earlier by Lindstrom and Oberhettinger
(1975), and for C; = 0 and t < t, by Parlange and Starr (1978). To provide
for a better presentation of subsequent results, some curves based on sol-
ution (37) are shown in Fig. 1. Results were obtained for the following param-
eter values: v = 25cm day '; D = 37.5cm? day '; u = 0.25 (day '), R =
3; to =5 (days); C; =0 and Cy =1 (meql7!). Note that the peak solute
concentration decreases when the 5-day-long pulse travels through the pro-
file. Because of decay also the total amount of salt in the profile (i.e. the
area under the curves) decreases with time.

D

c(x,t) =

. - 20 . T r T
p=0.25

°

- Y =0.0

®
T

ht

o

[=0.25

T T T T T T T

CONCENTRATION, ¢ (meq/2)
i
~
o
!
CONCENTRATION, ¢ (meq/%)
@

I

L
60 80 100

S T 20 6o 80 100 'oo zio I 4lo
DISTANCE , x (cm) DISTANCE , x (cm)
Fig. 1. Calculated concentration distributions at different times after applying a 5-day

long solute pulse to a semi-infinite medium. Calculated curves are based on eq. 37.

Fig. 2. Effect of the zero-order source term on calculated solute distributions after 7.5
days (to = 5). Calculated curves are based on eq. 10.
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Fig. 2 shows the effect of the zero-order source term () on the calculated
solute distributions after 7.5 days, again for a pulse length (¢,) of 5 days.
The remaining parameters have the same values as before. The curve labelled
v = 0 in Fig. 2 is hence the same as the curve labelled ¢t = 7.5 in Fig. 1. The
curves in Fig. 2 are based on eq. 10. It is evident that the source term leads
to an increase in concentration over the entire depth of the medium, but es-
pecially away from the surface. After reaching a maximum, the concentra-
tion levels off to a constant value when x increases. This constant value is
determined by the magnitudes of the rate parameters v and u, and is given
by the expression:

c(t) = y/u+ (C; —v/u) exp(— ut/R) (39)
Eq. 39 is simply the solution of eq. 6 for D = 0, » = 0, and initial condition
(9a).

The effect of the parameter u on the calculated distributions after 7.5
days and with t, again set at 5 days is shown in Fig. 3. The different param-
eters are again the same as before, except that the zero-order source term
is now fixed at 0.5 (meql 'day™!). The curve labelled u = 0.5 is therefore
the same as the curve labelled v = 0.25 in Fig. 2. When u increases, i.e. when
degradation increases, the concentrations in the profile clearly decrease in
value. The concentration is maximum when u becomes zero. Inspection of
the analytical solution (eq. 10) shows that the solution does not hold when
u becomes zero because of a division by zero. This same problem occurs with
all other solutions presented in the theoretical section. The governing trans-
port equation for u = 0 reduces to:

d%c oc dc
Do 7" R

Analytical solutions of eq. 40 may be obtained from the solutions of eq. 6
by rearranging certain terms in the solutions and subsequent application of
I’Hopital’s rule. Alternatively, one may apply Laplace transform techniques
directly to eq. 40 itself and its associated initial and boundary conditions.

= — (40)

20 T T T T
y=0.5

CONCENTRATION, ¢ (meq/%)
® s

L " L ! L L )
[¢] 20 40 60 80 100
DISTANCE, x (cm)

Fig. 3. Effect of the first-order decay constant on calculated solute distributions after 7.5
days (to = 5). Calculated curves for u > 0 are based on eq. 10; the curve labelled 1 = 0 is
based on eq. C-3.
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Appendix C lists the different analytical solutions of eq. 40, using initial and
boundary conditions which are similar to those used for cases AI—A5 and
B1—B5 before. The curve labelled u = 0 in Fig. 3 was obtained with the
analytical solution of case C1 in Appendix C (eq. C-3).

Fig. 4, finally, shows some curves based on eq. 18, i.e. for the steady-
state initial. condition (eq. 17 with C, = 0), and for a continuous feed sol-
ution at x = 0 (¢t <t, in eq. 18). The values of the remaining parameters are
again the same as before, except that y = 0.25 (meql 'day~!) and u = 0.50
(day™!). The curves in Fig. 4 are bounded by the initial condition and the
steady-state solution for ¢t =>oo (eq. 14 with C, = 1). These two boundary
curves converge to v/u when x increases.

All curves in Figs. 1—4 were obtained for a third or flux-type boundary
condition at the soil surface (eq. 8a). Slightly different results may be ex-
pected when this boundary condition is replaced by a first-type (or constant
concentration) boundary condition (eq. 8b), especially near the soil surface
boundary and close to the calculated concentration fronts. The effect of the
type of boundary condition used is most significant for large values of D/v.

S

T T

T
Y=0.25

H=0.50 |

©

o
T

CONCENTRATION, ¢ (meq/#¢)
I EN
T T
1

o

L
20 40 60 80 100
DISTANCE , x (cm)

Fig. 4. Calculated concentration profiles based on eq. 18 with ¢ < ¢y. The curve labelled
t = oo represents the steady-state solution given by eq. 14.

o

CONCLUDING REMARKS

Several analytical solutions have been developed for the movement of a
chemical in a one-dimensional semi-infinite system. The governing transport
equation includes terms accounting for linear equilibrium adsorption, zero-
order production, and first-order decay. All solutions also hold for the
limiting case when the zero-order production term becomes zero. When, on
the other hand, the first-order decay coefficient becomes zero, the solutions
have to be modified accordingly. Appendix C gives a list of these modified
analytical solutions.

The analytical solutions given in this paper may be used to predict the
movement of various chemicals in field soils. In addition, the solutions
should be useful for those more interested in a study of the actual chemical
transport mechanisms; for example, when analyzing data obtained from mis-
cible displacement experiments.
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APPENDIX A — ANALYTICAL SOLUTION FOR CASE Al

This Appendix gives a derivation of the analytical solution of the follow-
ing set of equations:

D&;—v—&;—Ra=uc—7 (A-1)
c(x,0) = C; (A-2)
vC o<t
—Da—c +vc) - { ! (A-3)
ox il 0 t>t,
dc
P o t) =0 (A-4)

The solution can be obtained by means of Laplace transforms. The Laplace
transform of ¢ with respect to ¢ is defined by:

c = c(x,s) = f exp(— st)c(x,t)dt , (A-5)
0

The Laplace transform of (A-1) which satisfies the initial condition (A-2) is:

D d’c v dc K\ - 04

g + £ = —1 _ -6

Rox®> R ox (s R)c Rs O (A-6)

The transforms of eqgs. A-3 and A-4 take the form:

dc _)
—D—+
( ax
oc
—_— e 0
The direct solution of eqs. A-6—A-8 is:

1/2
v v VX v? s+u/R)
—_ —_ —_— +__.___.
D (CO u)e"p{zp x(4D2 D/R
1/2
v v? s+u/R)
e
s[zp (4D2 DIR
vC, " v? s +u/R ]
P20 oxp(— +
p (™ fos) eXp[zp (4D2 D/R )

2 1/2
A vt +s + u/R
2D 4D? D/R

= vCo [1 —exp(—tos)] (A-T)

x=0

(A-8)

c(x,s) =
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vy v, v s+ u/R\V?
L i RN . b
D(u C‘) o [21) x(4D2 D/R )

1/2
(s+u/R)l ( v stwR “/R) J

4D? D/R

Y/R + G

s(s + u/R) s+ u/R (#9)

The inverse Laplace transform of the first term in eq. A-9 can be obtained
by first letting p =s, h = v/(2D), k = D/R, and a = u/R + v? /(4DR) in eq.
31 of Appendix A of Carslaw and Jaeger (1959), and subsequently using
a =—u/R —v?/(4DR) in equation (29.2.12) of Abramowitz and Stegun
(1970). The following expression was obtained for this term:

Iy (x,t) = (Co — /M) A(x,1) (A-10)

where A(x,t) is given by eqgs. 11 and 13 in the text.

The inverse of the second term in eq. A-9 follows immediately from the
first term and eq. A-10 by making use of equation (29.2.15) of Abramowitz
and Stegun (1970):

e 0 0<t<t, 11
x,t) = -
? — CoA(x,t — to) t>t, (&)

The inverse transform of the third term in eq. A-9 may be obtained by
first considering eq. A-1 without the two rate terms, i.e.:

d%c dc dc
Do —v——Ro = 1

oz “ox Toar (A-12)
The Laplace transform solution of this equation subject to the same initial
and boundary conditions as before, but with C; = 0 in eq. A-2, and with
Cy =1and t, > < in eq. A-3 (i.e. a continuous feed solution), is given by:

v vx 0?2 s+ u/R\"?
— exp[—— ——x(4D2 + ——————D/R )
c(x,s) = (A-13)

v? s |2
+ + -2
[21) (41)2 D/R) ]

The direct solution of eq. A-12 subject to these same initial and boundary
conditions, however, is known (Lindstrom et al., 1967):
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1 Rx — ot 02t \V? (Rx — vt)?
= — 4 ex ESHRL Wk ATl ST [T,
c(%,t) =g mmic [2(DRt)”2] (WRD) P 1™ " 4DRe

2
1 (1 + 24 u)exp(vx/D) erfc[ (A-14)

Rx + ot
2 D DR

2(DRt)"?

Eq. A-14 is hence the inverse transform of eq. A-13. Application of equation
(29.2.12) of Abramowitz and Stegun (1970) to eqs. A-13 and A-14 leads
now directly to the Laplace inverse of the third term in eq. A-9:

/ out\ 1 Rx — vt
I3(x,t) = (%—Ci)exp(—%){'z—erfc[w] +
vzt\)mex _ (Rx —wt)*|
arD| “P|”  4DRt

2
l(1 + 2 ”—t) exp(vx/D)erfc[R—xi”—t] } (A-15)

2 D DR 2(DRt)12

The inverse transforms of the fourth and fifth terms in eq. A-9 follow
from equations (29.3.12) and (29.3.8) of Abramowitz and Stegun (1970):

La(@,t) = (1 exp(— ut/R)] | (A-16)

Is(x,t) = Ciexp(— ut/R) (A-17)

The inverse transform of eq. A-9, which is the solution of egs. A-1—A-4, is
hence given by (see also eqs. 10—13):

c(x,t) = Iy (x,t) + L (x,t) + Iy (x,t) + L (x,1) + [5(x,1) (A-18)

APPENDIX B — ANALYTICAL SOLUTION FOR CASE B1

The governing equations for this case are the same as those for case A1
in Appendix A, except that eq. A-3 has to be replaced by:
Co 0<t<t
c(0,t) = (B-1)
0 t>t,

The Laplace transform of eq. B-1 is:

c(0,s) = gs_g exp(—tys) (B-2)
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The Laplace transform solution for the present case hence follows by solving
egs. A-6, A-8 and B-2. The solution is:

_ 1 0% vx o v s+ ,u/R)”2
_— —_— R + —— J—
olx,8) = (CO u)e i [21) (4172 D/R

Co v? s+ u/R\V? (y/u—Cy)
5 exP(~ tos) exp[zD (1172 DR ) J T stumr)

( 7)2 +M)1/2] + 7/-R + Ci (B-3)

v

eXP[ 402" "DJR s(s + W/R) s+ R

The inverse Laplace transform of the first term in eq. B-3 can be obtained
by first letting p =s, h =v/(2D), k = D/R, and « = u/R + v?*/(4DR) in
equation (19) of Appendix A of Carslaw and Jaeger (1959), and subsequently
using ¢ = —u/R —v*/(4DR) in equation (29.2.12) of Abramowitz and
Stegun (1970). This results in the following inverse transform of the first
term in eq. B-3:

Ji(x,t) = (Co —/u) H(x,t) (B-4)

where H(x,t) is given by eq. 26. The inverse of the second term in eq. B-3
follows again directly from the first term and eq. B-4 by using equation
(29.2.15) of Abramowitz and Stegun (1970):

Jen 0 0<t<t, 5
X, = -
2 _Co H(x,t_to) t>t0

The inverse transform of the third term in eq. B-3 follows again by making
use of equation (19) of Carslaw and Jaeger (1959) and equation (29.2.12) of
Abramowitz and Stegun (1970). By first letting p =s, xk = D/R, and o =
v? /(4DR) in the equation of Carslaw and Jaeger, and subsequently using
—u/R —v? [(4DR) for a in the equation of Abramowitz and Stegun, the fol-
lowing expression for the inverse of the third term in eq. B-3 results:

R R
Jy(x,t) = (;—C)exp( ut/R){lerf [ﬁ%}
Rx + vt } } (B-6)

exp(vx/D)erfc [W

The inverse transforms of the fourth and fifth terms in eq. B-3 are already
given by eqgs. A-16 and A-17 of Appendix A. The inverse transform of eq.
B-3, which is hence the solution of the present problem, is therefore (see also
eqgs. 26—28):

c(x,t) = Jy(x,t) +Jo(x,t) +J3(x,t) + 14 (x,t) + Is(x,1) (B-7)
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APPENDIX C — ANALYTICAL SOLUTIONS FOR ZERO-ORDER PRODUCTION
ONLY

This Appendix presents solutions of:
2
R==D— —v—+yv (C-1)
x x

for various initial and boundary conditions. The initial and boundary con-
ditions are the same as for cases A1—A5 and B1—B5, except that u = 0 in the
initial conditions of cases A3, A5, B3 and B5, and that the semi-infinite sys-
tem is more correctly described by:

3c

2| = (fnite)  (¢>0) (C-2)

Eq. C-2 requires that the concentration gradient remains finite when x goes
to infinity. All solutions were obtained by Laplace transform techniques.
Details of the derivation are omitted.

Case C1. The solution of eq. C-1 subject to conditions (9a), (9b) and (C-2)
is:

(.1) { C; + (Co — Cy) U(x,t) + V(x,1) 0<t<t
c(x,t) =
Cl+(CO _Cl) U(x,t)+V(x,t)—‘CoU(x,t_to) t>t0
(C-3)
where
1 Rx — ot v2t \12 (Rx — vt)?
U(x,t) = — + st 7
(0 =3 erfc[Z(DRt)m] (wDR) eXp[ 4DRt
1 Rx + vt
S+ E42L e 4
2 ( D DR)exp(vx/D)erfc|2(DRt)1/2] (C-4)

¥ t Rx DR Rx — vt t \V?
Vic,t) = Llie— (£ 2222 -
G1) R{ (2 20 207 )erfc[z(DRt)W] (47rDR) §

2DR (Rx — vt)? t DR | (Rx + vt)?
R + ot + ——|exp| — 2t [ 4 [ 2 28 4 (X T OO"
( TR )eXp[ 4DRt ]+ [2 20 © 4DR |’

(Rx + vt)”

exp(vx/D)erfc [Z(DR NE

(C-5)
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Case C2. The steady-state solution of case C1 (dc/dt = 0 in eq. C-1) follows
from eq. C-3 by letting ¢ and ¢, go to infinity:

c(x) = Cy + y(vx + D)/v? (C-6)

Case C3. The solution of eq. C-1 subject to the initial concentration:
c(x,0) = Cp +vy(vx + D)/v? (C-7)
and boundary conditions (9b) and (C-2), is:

+D
Cy +(Co = Co)Ulw, 1) + LD 0<t<t,
c(x,t) =
Cb + (CO _Cb)U(x,t) + ——CO U(x, t_to) t>t0

(C-8)

v(vx + D)
2

where U(x,t) is given by eq. C-4.

Case C4. The solution of eq. C-1 subject to conditions (19a), (19b) and (C-2)
is:

c(x,t) = C;—CiU(x,t) + CoW(x,t) + V(x,t) (C-9)
where U(x,t) and V(x,t) are given by eqgs. C-4 and C-5, respectively, and

where:
exp[(v - E)xJerfc[————Rx —& ] +

W(x,t) = exp(—)\t){

(@ + §) 2D 2(DRt)?
v (v + E)x Rx + &t
(v — )P [ 2D } erfc[z(DRt)W” -
2
27\3)R exp(vx/D)erfc [2—}(%1%)%2] (C-10)
with
£ = v[1 —4\DR/v*]? (C-11)

Case C5. The solution of eq. C-1 subject to conditions (C-7), (19b) and (C-2)
is:

c(x,t) = C, —C,U(x,t) + CoW(x,t) + y(vx + D)/v?- (C-12)

where U(x,t) and W(x,t) are given by eqgs. C-4 and C-10, respectively.
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Case D1. The solution of eq. C-1 subject to conditions (25a), (25b) and (C-2)
is:

(x.1) {Ci+(CO —C;) X(x,t) + Y(x,t) 0<t<t,
c(x,t) =
C; +(Cy — C;) X(x,t) + Y(x,t) —Co X(x,t — o) t>t,
(C-13)
where
1 Rx — ot 1 Rx + ot
X(x,t) = Eerfc [W + -iexp(vx/D)erfc[W] (C-14)
v (Rx —vt) Rx —vt |
Y(x,t) = }—2 {t + % erfc[ 2(DR1)1"
(Rx + vt) (Rx + vt)
T on exp(vx/D)erfc 2(DRD) " (C-15)

Case D2. The steady-state solution of case D1 (dc/dt = 0 in eq. C-1) follows
from eq. C-13 by letting t and ¢, go to infinity:

c(x) = Cy +yx/v (C-16)

Case D3. The solution of eq. C-1 subject to the initial condition:
c(x,0) = C, +yx/v (C-17)
and boundary conditions (25b) and (C-2) is:

Cp +(Co — Cy)X(x,t) + vx/v 0<t<t,

Cb +(Co _Cb)X(x,t)+7x/7)—COX(x,t—t0) t>t0
(C-18)

c(x,t) =

where X(x,t) is given by eq. C-14.

Case D4. The solution of eq. C-1 subject to conditions (25a), (32) and (C-2)
is:

c(x,t) = C; —CX(x,t) + CoZ(x,t) + Y(x,t) (C-19)

where X(x,t) and Y(x,t) are given by eqs. C-14 and C-15, respectively, and
where:

Z(x,t) = exp(—At) {-;— exp[(v — E)x] erfc [ Rx — &t ] +

2D 2(DRt)V?
1 v+ &)x Rx + &t
9 exp[——zD ] erfc [_—_2(DRt)1/2] } (C-20)

with £ given by eq. C-11.
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Case D5. The solution of eq. C-1 subject to conditions (C-17), (32) and (C-2)
is:

c(x,t) = C, —CpX(x,t) + CyZ(x,t) +yx/v (C-21)
where X(x,t) and Z(x,t) are given by eqgs. C-14 and C-20, respectively.
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